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The Betz criterion for minimum induced loss is used to compute the optimal circula- 
tion distribution along the span of flapping wings in fast forward flight. In particular, 
we consider the case where flapping motion is used to generate both lift (weight 
support) and thrust. The Betz criterion is used to develop two different numerical 
models of flapping. In the first model, which applies to small-amplitude harmonic 
flapping motions, the optimality condition is reduced to a one-dimensional integral 
equation which we solve numerically. In the second model, which applies to large- 
amplitude periodic flapping motions, the optimal circulation problem is reduced to 
solving for the flow over an infinitely long wavy sheet translating through an invis- 
cid fluid at rest at infinity. This three-dimensional flow problem is solved using a 
vortex-lattice technique. Both methods predict that the induced power required to 
produce thrust decreases with increasing flapping amplitude and frequency. Using 
the large-amplitude theory, we find that the induced power required to produce lift 
increases with flapping amplitude and frequency. Therefore, an optimum flapping 
amplitude exists when the flapping motion of wings must simultaneously produce lift 
and thrust. 

1. Introduction 
Wing flapping is a highly efficient means of propulsion. For example, using a quasi- 

steady theory, Betteridge & Archer (1974) have estimated that a sea gull (with weight 
W of 7.95 N, wing span b of 1.06 m, flight velocity U of 9.13 ms-l, and flapping 
frequency o of 25.1 rad s-I) can achieve a maximum inviscid propulsive efficiency of 
89.6%. Nevertheless, the fluid mechanics of flapping are not fully understood. For 
example, it is well known that to produce thrust the circulation should be greater 
on the downstroke than on the upstroke (at least for rigid wings flapping about a 
common hinge point on the longitudinal axis). It is not known, however, how to 
distribute the unsteady circulation along the span and over the flapping cycle to 
achieve a desired thrust and lift (weight support) and at the same time minimize the 
power required to flap the wings at realistic flapping frequencies and amplitudes. 

Numerous experimental studies of flapping birds and bats have been reported in 
the literature. In particular Spedding, Rayner & Pennycuick (1984), Rayner, Jones & 
Thomas (1986), Spedding (1986, 1987), and Rayner (1991) have visualized the flow 
in the wakes behind birds and bats in flight. In these studies, the air in a laboratory 
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FIGURE 1. (a) Vortex-ring wake. ( b )  Concertina or continuous-vortex wake. (c) Ladder wake. 
Sketches after Pennycuick (1988). 

was seeded with neutrally buoyant soap bubbles filled with helium. Trained birds and 
bats then flew through the seeded air, and the resulting flow structure in the wake 
of the animals was captured on film using stroboscopic photography. Rayner (1991) 
surveyed the available experimental data, and found that the structure of the wakes 
behind birds and bats falls into one of two distinct patterns. In slow flight, the wake 
appears to be composed of a series of vortex rings, one ring for each downstroke 
of the wings (see figure 1). In fast flight, the wake is composed of two undulating 
vortices which trail behind the animal. Furthermore, no transverse vorticity is 
observed. Quoting Rayner, “The absence of transverse vortices is not surprising, since 
the interaction of transverse vortices with the vortex on the wing can dramatically 
increase induced drag.” 

Based on these experimental observations, Rayner (1991, 1993) has proposed that 
birds use two distinct gaits: the vortex-ring gait and the continuous-wake gait. The 
vortex-ring gait is used in slow flight. According to Rayner, during the upstroke, 
the wing is flexed so that the span of the wing is reduced. Furthermore, the wing is 
aerodynamically inactive (little or no circulation is generated along the span of the 
wing). During the downstroke, the wing is fully extended and nearly flat, and the wing 
circulation along the span of the wing generates thrust and lift. The continuous-wake 
gait, on the other hand, is used in fast flight. The wing is aerodynamically active 
during both the downstroke and the upstroke with constant total circulation. During 
the downstroke, the wing is fully extended. During the upstroke, however, the wing is 
flexed or swept slightly to shorten the span of the wing, reducing the instantaneous 
lift while maintaining constant circulation. 

Rayner (1991) has asserted that all vertebrates use one of these two gaits in forward 
flight. Although not yet experimentally observed in vertebrates, Pennycuick (1988) has 
speculated that humming birds use a third gait which generates a ‘ladder wake’ (see 
figure 1). Using this gait, the wings remain flat on both the upstroke and downstroke. 
The circulation is slightly larger on the downstroke than on the upstroke, generating 
thrust and depositing shed vorticity into the wake at the top and bottom of the stroke 
(‘transverse vorticity’ in the parlance of avian aerodynamicists). 

While providing significant insight into the physics of flapping flight, flow visual- 
ization experiments have certain significant limitations. The wake rolls up rapidly 
behind the bird making it difficult to infer from measurements of the wake the precise 
history and distribution of circulation on the wing. The same can be said of fixed- 
wing aerodynamics. An elliptical circulation distribution along a fixed wing produces 
a continuous sheet of trailing vorticity behind the wing that rolls up into two tight 
trailing vortices with finite cores. The fact that the wake is composed of two discrete 
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trailing vortices, on the other hand, does not allow one to infer the precise circulation 
distribution on the wing. Nevertheless, the experimental observations of wakes behind 
birds and bats are invaluable for measuring the momentum and energy deposited in 
the wake, and for giving a general picture of the unsteady circulation distribution. 
Theoretical models of the aerodynamics of flapping, however, are required to fully 
understand flapping flight. 

Using the experimental evidence of the vortex-ring structure of the wake behind 
birds in slow flight, Rayner (1979) has proposed a theory of bird flight whereby the 
wake of a flapping bird in forward flight is modelled as a sequence of elliptically 
shaped vortex rings. The spacing of the vortex rings was derived from the frequency 
of the flapping motion; the strength of the vortex rings and their orientation were 
chosen so as to produce the required thrust and lift. Finally, the induced power is 
simply the rate at which kinetic energy is deposited into the wake. However, since 
the kinetic energy of an ideal vortex ring is infinite, Rayner assumed that each vortex 
ring had a finite core radius. The size of the core radius was chosen based on 
correlations to fixed-wing models. Using a finite core radius, the resulting induced 
power is finite. Rayner’s model - while perhaps qualitatively correct - suffers from 
a lack of knowledge of the unsteady circulation history. Furthermore, the proposed 
circulation distribution is impulsively started and stopped to form the vortex rings. 
Such an abrupt generation of circulation is unlikely to be optimum. 

A number of investigators have studied the problem of flapping flight by modelling 
the flow field induced near the flapping wings due to the system of trailing and 
shed vorticity in the wake. For instance, Willmott (1988) developed an unsteady 
lifting-line theory using the method of matched asymptotic expansions for the general 
motion of a wing with high aspect ratio. The analysis was somewhat incomplete, 
however, in that the theory predicted the unsteady downwash at the trailing edge 
of the wing and some of the unsteady forces, but did not predict the induced drag. 
Phlips, East & Pratt (1981) modelled flapping using an unsteady lifting-line theory in 
which the shed or transverse vorticity in the wake was lumped at the start of each 
stroke. Ahmadi & Widnall (1985) developed an unsteady lifting-line theory using 
matched asymptotic expansions, with the inverse of the aspect ratio being the small 
parameter. Lan (1979) has developed an unsteady quasi-vortex-lattice method which 
he then applied to predict the flapping efficiency of various planforms and flapping 
motions, including the flapping of the tandem wings of dragonflies. All of these 
theories, however, are restricted to low-frequency flapping, i.e. the reduced frequency 
k = wb/UG1 where w is the flapping frequency, b is the wing span, and U is the 
flight speed. (Note that in the present definition of the reduced frequency, the wing 
span has been used as the characteristic length. Although other length scales, such 
as wing chord, could have been used, the span is most appropriate for the inviscid 
analysis since thrust, lift, and induced power depend on the spanwise loading, and 
not directly on the planform of the wing.) 

The above analyses, while providing important understanding of the physics of 
flapping flight, give predictions of the energetics of flight for a prescribed wing mo- 
tion. These theories do not address the question of optimum flight performance. 
Ahmadi & Widnall (1986) used their unsteady low-frequency lifting-line theory (Ah- 
madi & Widnall 1985) to compute the energetics of flapping motion of a rigid wing. 
The wing was assumed to oscillate with a combination of pitching and plunging mo- 
tion. For a given wing planform and flapping frequency, they were able to calculate 
the combination of pitching and plunging motion that generated the desired thrust 
with minimum induced power. However, because the wing was assumed to be rigid, 
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the 'minimum' induced power found using this approach is larger than would be 
required if the pitching and plunging motion were allowed to vary along the span of 
the wing. In principle, however, the analysis of Ahmadi & Widnall (1986) could be 
extended to analyse this situation. 

Instead of considering what wing motions produce a given thrust with minimum in- 
duced power, one might instead determine for a given flapping motion what unsteady 
circulation distribution is optimum, thus bypassing the difficult problem of computing 
the details of the flow in the near field of the wing. Betteridge & Archer (1974), using 
a combination of quasi-steady lifting-line theory and actuator-disk theory, considered 
very low-frequency flapping ( k +  1) of high-aspect-ratio wings for the case where the 
left and right wings flap symmetrically about a common hinge point on the longi- 
tudinal axis. They decomposed the unsteady circulation along the span of the wing 
into a two-term Fourier series. Betteridge & Archer concluded (incorrectly) that the 
maximum propulsive efficiency is achieved when the unsteady incremental circulation 
distribution (that portion of the circulation which contributes to thrust) is elliptical in 
the spanwise direction. Jones (1980) considered the same problem posed by Betteridge 
& Archer and showed that the optimum circulation distribution for low-frequency 
small-amplitude flapping motion of high-aspect-ratio wings is not elliptical. Rather, 
the incremental circulation distribution is fuller near the tips than at the mid-span. 
Jones also showed that the optimum circulation distribution produces the same thrust 
for about 10% less power than an elliptical distribution. 

The theories of Betteridge & Archer (1974) and Jones (1980) are restricted to very 
low-frequency small-amplitude motions. Notwithstanding these assumptions, their 
results predict that high induced propulsive efficiencies are achieved using flapping 
motions with large amplitudes and/or high frequencies. In fact, birds in fast forward 
flight are observed to flap their wings with moderately large frequencies. For example, 
Tucker (1968, 1973) studied the flight of budgerigars (Melopsittucus undulutus) in a 
wind tunnel. He observed that one specimen with a wing span b of 0.235 m flapped 
its wings with a constant beat frequency w of 88 rads-' for a range of flight speeds 
U from 5.3 ms-' to 13.3 ms-'. This corresponds to a range of reduced frequencies 
k from 1.55 to 3.90. Similarly, Tucker (1972, 1973) measured the flapping frequency 
of a laughing gull (Lurus utricillu) with a wing span b of 0.93 m to be a constant 
23.8 rads-' over a range of flight speeds from 8.6 to 11.2 ms-' corresponding to 
reduced frequencies k between 1.98 and 2.57. 

In this paper, we address the problem of finding the unsteady distribution of 
circulation along the span of flapping wings that produces a specified lift and thrust 
with minimum induced losses. Induced losses include both induced drag and induced 
shaft power, the additional power required to flap the wings due to induced forces 
opposing the flapping motion. For this purpose, we adapt a theory recently developed 
by Hall, Yang & Hall (1994) for predicting the optimum circulation distribution for 
helicopters in forward flight. The method is based on the Betz (1919) criterion for 
minimum induced loss (M.I.L.) propellers. Goldstein (1929) used the Betz criterion 
to determine the optimum circulation distribution along the blades of propellers. 
Lighthill (1970) has alluded to the possibility of using a theory similar to Goldstein's 
propeller theory to predict the propulsive efficiency of swimming fish which flap their 
caudal fins to generate thrust. Propulsion via flapping, however, is fundamentally 
different from propulsion via rotation of a propeller in at least two ways. First, in the 
propeller problem, only thrust is developed. In the flapping problem, both thrust and 
lift (weight support) must be developed. Second, the optimum circulation distribution 
along the span of a propeller blade is constant with time. For the flapping problem, the 
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FIGURE 2. Top view of bird in flight showing coordinate system and vortex filaments (trailing and 
shed vorticity) in unsteady wake. (Harris’ hawk planform after Tucker 1992). 

spanwise circulation varies with time. Nevertheless, as we will show, the Betz criterion 
may be applied to flapping motion of wings (as well as helicopters in forward flight). 
Furthermore, because the resulting theory deals with the far wake and not the details 
of the flow about the wing itself, no simplifying assumptions regarding the reduced 
frequency or amplitude of flapping motion are required. Therefore, the present theory 
is applicable to high-frequency and/or large-amplitude flapping motions. 

In $2, we describe the extension of the Betz criterion for M.I.L. propellers to 
the case of the flapping motion of wings. In $ 3 ,  we apply the results of $ 2  to 
the case of small-amplitude harmonic flapping motion. We show that the problem 
of finding the optimum spanwise circulation distribution can be reduced to a one- 
dimensional integral equation for the unknown circulation. This integral equation is 
solved efficiently using numerical quadrature. In $ 4 we describe a three-dimensional 
vortex-lattice method for computing the optimum circulation distribution for large- 
amplitude period flapping motion which must simultaneously produce thrust and lift. 
Finally, in $ 5 ,  we conclude with a brief summary and discussion of similarities and 
differences between our computational results and experimental observations of bird 
flight. 

2. Minimum induced loss flapping 
2.1. Inviscid j o w  model 

For the purposes of computing the induced losses due to wing flapping, we assume 
that the flow resulting from flapping is inviscid, incompressible, and irrotational 
(except for the trailing and shed vorticity in the wake). Thus, the three-dimensional 
flow about the wings and wake is governed by Laplace’s equation, 

v24 = 0, (2.1) 

where 4 is the usual velocity potential. The Cartesian coordinates x, y, and z are 
taken to be along the longitudinal, lateral, and vertical axes as shown in figure 2. 
Furthermore, the coordinates are fixed to the fluid frame of reference, so that the 
velocity of the fluid goes to zero at infinity. 

In the present analysis, we assume that the flapping wing is lightly loaded. Thus, 
the sheet of shed and trailing vorticity (the wake) left behind the wing is only slowly 
convected under its own influence. For the present analysis, we therefore assume the 
wake is rigid, that is, the position of the wake is the trace of the position of the 
trailing edge of the wing. Finally, we assume that the flapping motion of the wings 
is periodic in time with period T .  Thus, the shape of the wake is also periodic in 
the flight direction. Physically, of course, the wake rolls up a short distance behind 
the wing. Nevertheless, the assumption that the wake does not roll up and is not 
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FIGURE 3. Control volume enclosing one period of the far wake. 

convected greatly simplifies the subsequent analysis. Furthermore, experience in wing 
and propeller theory suggests that the induced losses obtained using this assumption 
will be in good agreement with experiment. 

2.2. Kelvin impulses 

The force (thrust, side force, and lift) acting on the flapping wing arises when the 
wing imparts linear momentum to the surrounding fluid. The force averaged over one 
period of flapping motion is equal and opposite to the time-averaged rate of change 
in momentum of the flow field. The linear momentum 5 deposited in the wake per 
temporal period 7' of wing flapping is given by 

where p is the fluid density. In (2.2), V" is a control volume enclosing one period 
of the far downstream wake and extending to infinity in the y -  and z-directions (see 
figure 3). The integral in (2.2) is evaluated in the fluid frame of reference so that the 
velocity V 4  goes to zero as ly(  or IzI goes to infinity. 

Using Gauss' theorem, the volume integral in (2.2) may be converted to a surface 
integral over the surface d bounding the volume V", so that 

where n is the unit normal to the surface pointing into the volume V .  Since the 
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potential is periodic in the flight direction in the far-wake region, and since the unit 
normals on the fore and aft periodic boundaries of the volume point in opposite 
directions, the net contribution from the integration over the periodic boundaries 
is zero. Similarly, the potential in the far field goes to zero faster than l /r ,  where 
r2 = y 2  + z2,  so that the contribution from the surface integral at infinity is also zero. 
Therefore, the only contribution to the integral in (2.3) arises from the potential on 
the surface of the wake itself. Hence, 

where W is the upper surface of one period of the wake, and n is the unit normal 
to the wake. Also, A 4  is the jump in potential across the wake - 410wer) and 
is equal to r ,  the circulation on the wing as the trailing edge of the wing passes by 
that point in space. 

The quantity 5 is essentially the Kelvin linear impulse, and represents the increase 
in momentum in the fluid due to one period of wing flapping. Thus the average force 
per cycle acting on the flapping wings is just the negative of the Kelvin impulse 5 
divided by the temporal period T of the flapping motion, so that 

Separating the force into thrust, side force, and lift components gives 

(2.5) 

Examination of (2.6) reveals, as expected, that thrust cannot be generated unless the 
unit normal to the wake n has some component in the x-direction. In other words, 
to generate thrust, the motion of the wings must have some motion perpendicular to 
the direction of flight, i.e. either up and down or side to side. Fore-and-aft motion 
of the wings by itself cannot generate any average thrust. Another consequence of 
(2.6) is that thrust can only be generated by an unsteady aerodynamic process. The 
subscript “1” in (2.6)-(2.8) denotes that the forces computed using Kelvin impulse 
technique contain only first-order effects. This is a consequence of our assumption of 
a rigid (lightly loaded) wake. Also note that all three components of force have the 
same physical origin, that is, circulation (Kutta-Joukowski ‘lift’). 

One interesting feature of (2.5) is that the expression contains no unsteady terms. 
This is because our derivation is carried out in the fluid frame of reference. Recall 
that the wake is assumed to be convected with the unperturbed flow field. Thus, 
apart from higher-order roll-up effects which are ignored, the flow is steady in the 
fluid frame of reference, and therefore a / &  = 0. As an alternative, one could derive 
the time-averaged forces acting on the wing by enclosing the wing with a control 
volume fixed in the wing frame of reference, and then apply the integral form of the 
conservation of mass and momentum. We have included such a derivation in the 
Appendix. The results obtained using the control volume approach are identical to 
first order to those computed in this section using Kelvin impulses. 
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2.3. Induced power 
The forces calculated using (2.5) do not include any induced forces, such as induced 
drag or induced shaft power (shaft power is the mechanical power required to flap 
the wings). In the present theory, we do not compute these induced forces directly. 
Instead, we equate the rate of work done on the fluid by the induced forces to the rate 
of kinetic energy deposited in the wake. The average induced power is equal to the 
kinetic energy deposited in the wake over one period divided by the period, so that 

Note that as defined here, the induced power g i n d  is the wasted power. That is, the 
induced power is the total shaft power minus the useful thrust power, 

g i n d  = g s h a f t  - (yl - g i n d )  u 
= gind,shaft + gind,drag, 

(2.10) 
(2.1 1) 

where 9&,aft is the total shaft power, yind,shaft is the induced shaft power equal to 
P s h a f t  - 5 1  U ,  and gind,drag is the induced drag power equal to 9 , n d U .  Thus, induced 
power ~ which is positive by virtue of (2.9) - may be manifested as an increase in 
drag, an increase in shaft power, or some combination of the two. 

Making use of Green's theorem, (2.9) can be rearranged to give 

(2.12) 

The second integral term in (2.12) is identically zero since the velocity potential 
satisfies Laplace's equation. Furthermore, since the potential is periodic in the flight 
direction, and the potential goes to zero in the far field faster than l /r ,  the only 
contribution to the surface integral in (2.12) arises from the integration over the 
wake. Hence, the induced power is related to the induced wash w at the surface of 
the wake and the circulation r by 

(2.13) 

Note that the lift, thrust, and induced wash are proportional to the circulation 
r .  However, the induced wash is linearly related to the vorticity, and hence the 
circulation in the wake, by the Biot-Savart law. Therefore, the induced power goes 
like the square of the circulation, and by implication is quadratic in the lift and thrust 
(assuming that the side force is zero). Hence, we may write 

g i n d  = plly12 + p12915-1 + p22512, (2.14) 

where pll,  p12, and p22 are dimensional constants. In non-dimensional form, (2.14) is 
expressed as 

G,",, = kiiCG1 + k12C.~~Cs, + k22Cgl, 2 (2.15) 
where C~q,nd, Cyl ,  and Csl are the coefficients of induced power, lift, and thrust 
respectively, and are defined by 

(2.16a,b,c) 

and where 
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Note that we have non-dimensionalized the lift, thrust, and power coefficients by the 
span squared rather than the wing area. We do this for two reasons. First, it simplifies 
the notation. Second, and more importantly, we want to emphasize the importance of 
span loading on the aerodynamic forces and induced power. For inviscid flows, these 
quantities depend only on the time history of the spanwise circulation distribution, 
and not the planform or aspect ratio of the wing. To convert to the conventional 
form of the lift coefficient, for example, one should multiply Cp, above by the aspect 
ratio of the wing. 

2.4. Minimum induced loss Circulation distribution 
Having described the relationship between the lift, thrust, induced power, and the 
circulation, we now turn to the problem of finding the optimum distribution of 
unsteady circulation. We seek to determine the distribution of circulation that 
minimizes the induced power subject to the constraint that a prescribed average lift 
and thrust is generated. Therefore, we define the Lagrangian power 17 to be 

17 = 9 i n d + A * ( F - F ~ ) ,  (2.18) 

where F R  is the vector of prescribed forces which in general would contain the 
prescribed lift 9p~, side force YR, and thrust FR. The vector A is the corresponding 
vector of Lagrange multipliers [A,, j l ~ ,  A,] T .  To find the constrained optimum 
circulation distribution, one finds the circulation that makes the Lagrangian power 
17 stationary. Taking the variation of 17 and setting the result to zero gives 

617 = $ lw (Aan6r - i w - n d r  - i r6w.n)  d d  + 612. ( F  - F R )  = 0. (2.19) 

Equation (2.19) contains variations in both the circulation and the induced wash 
(6r and 6w). However, the variation in the circulation and the variation in the 
induced wash are not independent; they are related by the reciprocity condition 

(2.20) 

Equation (2.20) is a consequence of the fact that the potential 4 is a solution of 
Laplace’s equation. To demonstrate this, we make use of the second form of Green’s 
theorem, i.e. 

where $1 and 42 are arbitrary functions of x, y ,  and z .  Letting $ 1  = $ and 42 = 6$ 
gives 

[k ($V2S4 - S4V2+) d-Y- = - ( 4 V 6 4  - 6$V+) Sndd.  (2.22) ss, 
The left-hand side of (2.22) is zero since the potential 4 satisfies Laplace’s equation. 
Finally, applying arguments similar to those used to derive (2.4), (2.22) becomes 

(2.23) 

which proves the reciprocity condition given by (2.20). Using (2.20) to eliminate 6w 
in favour of 6r, (2.19) becomes 

6 II = $ lw (A n - w n) 6r d d  + 612 - ( F  - F R )  = 0. (2.24) 
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The first-order necessary condition for the circulation distribution to be optimum 
is that 617 = 0 for all permissible variations in 6r and 612. Therefore, the optimality 
conditions are given by 

J#- I - J R ,  - #- (2.25) 

9 1  = Y R ,  (2.26) 

3 1  = g R ,  (2.27) 
and 

wan = 2 . n .  (2.28) 
The first three conditions are simply that the thrust, side force, and lift must be equal 
to the specified values. The fourth condition is a generalization of the Betz (1919) 
criterion for M.I.L. propellers. The physical interpretation is that the induced normal 
velocity produced by the optimum circulation distribution is identical to the normal 
wash one would obtain if the wake were a rigid impermeable surface translated 
through the fluid at velocity A. Thus, the optimum circulation problem is reduced to 
solving for the flow over an infinitely long wavy surface translating at velocity A ;  the 
Lagrange multiplier A is selected so as to satisfy the first three necessary conditions. 
Note, however, that the induced wash tangent to the wake surface is not necessarily 
zero. Therefore the optimum circulation distribution does not necessarily produce 
a self-preserving wake. Furthermore, the vortex sheet may be unstable, causing the 
sheet to distort and roll up. 

One subtlety of the present analysis merits a brief digression. Ideally, one should 
prescribe the total thrust, 9 = .TI - and minimize the total shaft power, 
g s h a f t  = 91 u -I- gind,shaft. In the above analysis, we instead prescribe the first-order 
thrust 91 and minimize the sum of the induced shaft power gind,shaft and induced 
drag power gind,drag = g i n d u .  Thus, in the end, we do not know the relative sizes of 
the induced shaft power and induced drag power, only the sum of the two. The choice 
to work with .TI rather that 9 is convenient, if not essential, so that the thrust will 
remain a first-order quantity producing a simple and elegant form for the constrained 
optimization problem. Fortunately, in the limit of light loading, the two approaches 
are asymptotically identical. To show this, consider the propulsive efficiency qp, which 
is given by 

(2.29) 
net thrust power - (TI - g i n d )  u 

- 
‘P = net shaft power 9 1  u + gind,shaft. 

The inefficiency is given by 

(2.30) 

Thus, asymptotically, the solution of maximum propulsive efficiency is that solution 
which minimizes the sum of the induced drag and induced shaft powers for a 
prescribed first-order thrust. 

3. Small-amplitude harmonic flapping 
3.1. Theory 

Consider the special case where the flapping motion of the wing is small and sinusoidal 
in time. The position of the wake may be expressed as 

h(x,  y )  = x ( y )  sin(ax), ly I d b/2, (3.1) 
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where h is the z displacement of the wake. The wavenumber a in the flight direction 
is related to the flapping frequency by ab = k .  Thus, ab is just the reduced frequency 
of flapping. Without loss in generality, a is assumed here to be positive. For 
flapping motion which is symmetric with regard to the upstroke and downstroke as in 
(3.1), the optimal circulation for lift and optimal circulation for thrust problems are 
decoupled. Therefore, for the case where flapping must generate both thrust and lift 
(weight support), the optimal circulation is the sum of a steady elliptical circulation 
distribution, plus a sinusoidally varying circulation distribution, i.e. 

T(x,y) = To(y) +T(y;a)cosax, (3.2) 

where To(y) is the steady (elliptical) circulation distribution required to generate the 
desired lift, and T(y;a) is the amplitude of the circulation distribution required to 
generate thrust. 

Considering now just the generation of thrust, we know from the previous discussion 
that the optimum distribution of vorticity will be such that the normal wash is identical 
to that one would obtain if the wake were translated in the x-direction with speed 
A,-. Hence, the optimum induced normal wash on the wake satisfies 

w(x,y) = Af i - i - I t .  (3.3) 

For small-amplitude flapping ( x ~ l  and a h ~ l ) ,  the unit normal to the wake is given 
approximately by 

a h .  a h .  
It = k +  --I + --J, ax ay (3.4) 

so that 

w(x, y) = w(y ; a) cos(ax) = a~fi-E(y) cos(ax) for lyl < b/2.  (3.5) 
The aerodynamic forces are found by substituting (3.2) and (3.4) into (2.6)-(2.8). 

The average thrust, side force, and lift are given by 

Next, we wish to solve for the optimum circulation distribution T(y;a) that will 
produce the desired thrust. We begin by solving for the velocity potential 4. The 
velocity potential 4 is governed by Laplace’s equation, (2.1). Since the induced normal 
wash w is sinusoidal in x, the velocity potential will be sinusoidal as well, at least in 
the far downstream wake region. Thus, we let 

44% Y, z )  = $<Y, z ; a) cos(ax). (3.9) 

Substitution of (3.9) into Laplace’s equation gives 

a2$ a2$ 2- 
- + - - a ( b = o .  
ay2 a 2 2  

This equation is solved in the (y, z)-plane subject to the boundary conditions 

(3.10) 

= W(y;a) for lyJ < b/2, % Ir=O (3.11) 
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- 
+(y,O; a) = 0 for /y l  > b/2. (3.12) 

Note that because small-amplitude flapping motions are considered, the induced wash 
boundary condition may be applied at z = 0 rather than z = h. Additionally, we 
require that the potential go to zero at infinity, and that the potential be antisymmetric 
about the y-axis. 

The solution to this problem is obtained using Fourier transform techniques. Fourier 
transforming the governing partial differential equations in the y-direction gives 

so that 
~- d2@* 

(a2 + 8 2 )  @* = 0, 
dz 

(3.14) 

where @ * ( z ; a , p )  is the Fourier transform of $(y,z;a).  The solution to (3.14) is given 

@*(z; a, p )  = Ael"l(.*+P*)"* + Be-l"("2+P*)1'2* (3.15) 

For the solution to be bounded at infinity, A must be zero. Thus, on the upper side 
of the symmetry plane ( z  = O+), we may write that 

by 

(3.16) 

where W*(a, p) is the Fourier transform of the induced normal wash W ( y  ; a). Making 
use of the fact that the solution is antisymmetric about z = 0, we note that r (x, y )  = 
24(x, y ,  O+), so that 

(3.17) 

where r* is the Fourier transform of r. 
Next, we inverse Fourier transform (3.17) to obtain the relationship between the 

normal wash at the surface of the wake and the circulation. This gives 

w* = -ir*(C?+p 2 ) 112 , 

~ ( y ;  a) = -- T*(a2 + p2)1/2e+iBYdp. (3.18) 

Equation (3.18) may be viewed as the inverse transform of the product of two 
transforms. Formally, we have that 

4n /+m --m 

- 

(3.19) 

where K1 is the first-order modified Bessel function of the second kind. The result 
is formal because strictly speaking the inverse transform of (a2 + p 2 ) n  only exists 
for n < 0. Using the well-known result that the transform of the convolution of 
two functions is just the product of the transforms of the individual functions, we 
conclude that 

dy'. a2K1 (EIY - Yll )  

UlY - Y'l 
- 
w ( y ; a )  = -- (3.20) 

Equation (3.20) is an integral equation that relates the normal wash W on the wake to 
the unknown circulation r and a symmetric kernel. Note that the integral in (3.20) 
is taken over the span of the wake since the circulation is zero outboard of the tips 
of the wake. The kernel in (3.20) has a second-order singularity at y = y'. However, 
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physically, the integral should be bounded. We conclude that the integral should be 
evaluated as a Mangler (1951) principal value integral. 

Even though the steps taken to obtain (3.20) are strictly speaking not rigourous, 
the derivation is relatively straightforward and elegant. Furthermore, a more careful 
analysis should produce the same result. An outline of the approach is as follows. 
The product of transforms in (3.17) may be expressed as 

(3.21) 

The inverse transform of each of the factors in parentheses in (3.21) is well defined. 
Because the inverse transform of the second factor has a first-order singularity, the 
resulting convolution integral must be interpreted as a Cauchy principal value integral. 
Integration by parts of the Cauchy principal value integral results in (3.20), which in 
turn must be interpreted as a Mangler principal value integral. 

The behaviour of the kernel in (3.20) is of some interest. For small values of a 
(low-frequency flapping), the wake is composed predominantly of trailing vorticity 
and the quasi-steady kernel 1/[2n(y-y’)*] is recovered. Therefore, we may expect that 
for low-frequency flapping, the optimum circulation distribution will be essentially 
identical to the quasi-steady model of Jones (1980). For large values of tx (high- 
frequency flapping), the wake is composed predominantly of shed vorticity and the 
influence of the kernel function becomes localized. Thus, in the high-frequency limit, 
we expect that the local circulation will be proportional to the local downwash. 

3.2. Numerical solution of the integral equation 

Except for special limiting cases, the authors know of no general closed-form solution 
to the above integral equation, (3.20). Therefore, in the present work, the integral 
equation is solved numerically. The span of the wake is divided into N panels as 
shown in figure 4. Over each panel, the circulation r is assumed to be a constant Fj, 
where j denotes the j th panel. The normal wash condition, (3.20), is satisfied at N 
collocation points yi at the centre of each panel so that 

N 

(3.22) 
- 
wi = CA~~F~ for i = 1, N ,  

j=l 
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(3.23) 

In matrix form, (3.22) may be expressed as 

(3.24) w = AT, 

where W and are vectors containing the panel values of mi and Tj.  
It remains, then, to numerically evaluate the integral in (3.23), which can be done 

in two different ways, depending on the size of alyi - yjl. When alyi - yjl  is smaller 
than 3.0, the integrand is approximated using the asymptotic expression 

- 

t2  
It1 t 2  32 

--- K 1  ( I t 1 )  + i (210g It/2( + 27 - 1) + - (210g (t/2( + 2y - i) + . . . , (3.25) 

where y is Euler’s constant ( y  = 0.577216 ...). Substitution of this approximation into 
(3.23) gives 

+ 4 In lYi - ~ 2 j l  (Yi - ~ 2 j )  - In lyi - Yljl (Yi - Y l j )  + . . . , (3.26) 1 
where y l j  and y2j are the positions of the left and right ends of the j t h  panel. When 
alyi -y,l is greater than 3.0 and A y j / l y i  - y j 1 4 1 ,  the integrand in (3.24) may be taken 
to be constant over the panel so that 

For sinusoidal flapping motion, the induced power integral reduces to 
r+b/2 

Numerically, the induced power is approximated by 
N 

i=l 

Substitution of (3.22) into (3.29) yields 
N N  

(3.27) 

(3.28) 

(3.29) 

(3.30) 

where the ijth entry of the matrix K is 

K . .  i j  - - _ _  tPUAijAYi. 

Similarly, the thrust generated by flapping [see (3.6)] is approximated by 
N 

Jr 1 - - j p U a E & j T j A y j  1 = BT, (3.31) 
j=l 
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FIGURE 5. Minimum induced power circulation distributions for thrust due to flapping: 
present small-amplitude harmonic theory; - - -, Jones (1980) quasi-steady theory. 

where B is a row vector with the j th entry given by 

Finally, the discrete approximation to the Lagrangian power (see (2.18)) is expressed 

(3.32) 

Taking the variation of (3.32) and setting it to zero gives the desired system of linear 
equations for the unknown circulation T and the Lagrange multiplier &-, 

as 
T -  n = IT 2 K T + &  ( B F - Y ~ ) .  

K B T  
[ B  o ] {  is '}={ A } *  (3.33) 

Equation (3.33) is solved using Gaussian elimination. Typically 100 panels are used, 
and the assembly and solution of (3.33) requires about 0.2 s of CPU time on a Silicon 
Graphics Indigo R4400 workstation. 

3.3. Numerical results: M I L .  circulation distributions for small-amplitude flapping 

In this section, we compute the circulation distributions required to generate thrust 
with minimum induced power for small-amplitude harmonic flapping. In all cases, we 
consider flapping motions given by 

- 
W Y )  = 6'1Yl for lYl d b/2,  (3.34) 

where 6' is the amplitude of the flapping motion, with 6'41. Equation (3.34) describes 
rigid-body flapping of two halves of a wing about a common hinge point located at 
y = 0. 

Using the present small-amplitude theory, the optimum circulation distribution was 
computed using 100 equally sized constant-strength circulation panels along the span 
of the wake for several different flapping frequencies k .  Shown in figure 5 are the 
resulting circulation distributions. Also shown for comparison is the quasi-steady 
theory of Jones (1980). Jones was able to find an analytical solution to the minimum 
induced power problem for the case of quasi-steady small-amplitude flapping of the 
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small-amplitude harmonic theory; - - -, Jones (1980) quasi-steady theory. 
FIGURE 6. Minimum induced power requirements for thrust due to flapping: , present 

form given by (3.34), i.e. 

Note the very good agreement between the present theory and the quasi-steady 
theory of Jones for k = 0. The very small differences between the exact theory of 
Jones and the present numerical technique are due to truncation error arising from 
the discretization of the integral equations ((3.22), (3.29), and (3.30)). Interestingly, 
the largest circulation is not at the midspan. Instead, the circulation maxima are 
located roughly halfway between the midspan and the tips. Furthermore, as the 
flapping frequency is increased, the circulation maxima move toward the tips and the 
circulation at the midspan diminishes. This is to be expected since for high flapping 
frequencies the influence of the kernel function in (3.20) becomes highly localized, 
and the circulation will be proportional to the local induced wash. 

Shown in figure 6 is the thrust power coefficient k22 associated with the minimum 
induced power circulation distributions. Note that for small-amplitude flapping the 
induced power is proportional to OP2. Thus, in figure 6, we plot 02k22 to remove the 
amplitude dependence. The induced power for low-frequency flapping (small k )  is 
seen to be quite large. Also shown for comparison is the induced power predicted 
using the quasi-steady theory of Jones (1980). Not surprisingly, Jones' quasi-steady 
theory predicts lower induced power losses since the quasi-steady theory does not 
account for losses associated with unsteady shed vorticity in the wake. 

Note that the present small-amplitude theory predicts that the minimum induced 
power is achieved using large-amplitude, high-frequency flapping motions. However, 
the small-amplitude theory is only valid when 861 and k O 6 l .  The second of 
these requirements is made to ensure that the normal to the wake sheet may be 
approximated by (3.4). The present theory may fail when either of these conditions 
is violated. For example, actuator disk theory predicts that the limit of the thrust 
power coefficient k22 for high-frequency flapping is k22 = 1/(26). However, the small- 
amplitude theory incorrectly predicts that the induced power is proportional to 1/02 
for high-frequency flapping. 
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Downstroke Upseoke -4 
FIGURE 7. Top view of computational grid used to compute optimum circulation distributions for 
large-amplitude flapping. One period of the far wake is divided into a number of quadrilateral 
vortex ring elements. 

4. Large-amplitude periodic flapping 
4.1. Vortex-lattice method 

The small-amplitude analysis of 0 3 is not valid whenever the amplitude of the 
flapping motion, or the product of the amplitude and the frequency, is not small. 
To overcome these limitations, we have developed a three-dimensional vortex-lattice 
technique for computing the optimal distribution of circulation for large-amplitude 
periodic flapping. 

To begin, one period of the wake is divided into a number of quadrilateral vortex 
ring elements as shown in figure 7. The vortex elements in the reference period of the 
wake are numbered 1 to N .  The induced power integral, (2.13), is then approximated 
by 

where Ti  is the strength of the ith vortex panel, ni is the unit normal to the ith panel, 
and AAi is the surface area of the panel. The induced wash wi is the wash at the 
centre of the ith panel, and is given by 

N 

j= 1 

where V i j  is the velocity at the centre of the ith panel induced by an infinite row of 
vortex ring panels of unit strength spaced a distance U T  apart in the x-direction, with 
the reference sending panel located at the j th position in the grid. Standard numerical 
techniques are used to compute the induced wash. For panels that are close to the 
collocation point, the exact wash due to a quadrilateral vortex ring is computed (see 
for example Katz & Plotkin 1991). For panels that are far from the collocation point, 
the vortex ring panel is approximated by a point doublet oriented in the direction 
normal to the panel surface. This approximation reduces the computational time 
required to assemble the influence coefficients V i j .  
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Having computed the induced wash influence coefficient, we put (4.1) and (4.2) 
together to obtain 

N N  

i=l j=l 

P where 

Similarly, the force F acting on the flapping wings is expressed as 

K . .  - -_ V . .  .n.AA. 
- T I' ' I '  

(4.4) 

where bj  is the j th column of B and is given by 

bj = TnjAAj .  P 
(4.6) 

Finally, the Lagrangian power is given by 

n = p w  + A .  ( B r  - F ~ ) .  (4.7) 

Taking the variation of (4.7) and setting the result to zero gives the desired set of 
linear equations for the unknown optimal circulation distribution, i.e. 

Equation (4.8) is solved using LU decomposition to determine the optimal distribu- 
tion of circulation and the corresponding Lagrange multipliers for a prescribed thrust 
and lift. In this form, it is clear that the optimal circulation required to simultaneously 
produce both thrust and lift is equal to the sum of the optimal distribution of circu- 
lation required to generate the desired thrust but no lift and the optimal distribution 
of circulation required to generate the desired lift but no thrust. 

4.2. Numerical results: M.I.L. circulation distributions for  propellers 
To test the accuracy of the present vortex lattice model, we first use the present 
vortex lattice model to compute the minimum induced power circulation distribution 
for a two-bladed propeller. In essence, a propeller generates thrust using 'rotational 
flapping' rather than reciprocal flapping about the longitudinal axis as in the case of 
flying animals or ornithopters. The other difference is that the lift acting on the blades 
of a propeller is nominally steady. Hence the wake contains only trailing vorticity, 
i.e. the vortex filaments form helixes. Nevertheless, the case of a propeller is useful 
since Goldstein (1929) has found solutions to the minimum induced loss problem 
for propellers with small advance ratios, a condition equivalent to large-amplitude 
high-frequency flapping. 

Figure 8 shows the computed minimum induced loss distribution for a propeller 
of radius R rotating with speed SZ and generating thrust Fl. Advance ratios 1-1 of 0.1 
and 0.5 are considered, where 

T T  
U 

/A=- .  
SZR (4.9) 

These solutions were computed using a vortex-lattice mesh with 32 x 32 vortex ring 
elements per turn of the wake. Also shown for comparison are the analytical results 
tabulated by Goldstein (1929). Since the present vortex-lattice method is a numerical 
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FIGURE 8. Optimum circulation distribution for two-bladed propeller at two different advance 
ratios: ~ , present vortex-lattice method; 0, Goldstein (1929) theory with advance ratio p = 0.1; 
0, Goldstein (1929) theory with advance ratio p = 0.5. 
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FIGURE 9. Minimum induced power circulation distributions for thrust due to flapping: 
small-amplitude harmonic theory; 0, 0, A, and V, vortex-lattice method with 0 = 1". 

approach for solving the same problem as posed by Goldstein, it is reassuring - 
but not surprising - that the two methods agree almost exactly. The very small 
differences between Goldstein's solution and the present method are due primarily to 
truncation error arising from the finite grid resolution (and possibly truncation error 
in Goldstein's original series solution). 

4.3. Numerical results: M.I.L. circulation distributions for  flapping 

In this section, we compute the optimal circulation distributions and corresponding 
power requirements for flapping flight using the vortex-lattice method described above. 
We consider flapping motions where the wake has the shape 

for d b/2.  
z = sin[6 cos(ax)] 
y = I('] COS[~COS(~X)]  (4.10) 

This motion corresponds to a wing with a straight, unswept trailing edge flapping 
rigidly about a hinge point on the longitudinal axis. 

For the first case considered, the amplitude of flapping is small with 6 = 1". Shown 
in figure 9 is the optimum circulation required to produce thrust. The circulation is 
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FIGURE 10. Minimum induced power circulation distributions for thrust due to flapping: -, 
small-amplitude harmonic theory; 0, 0, A, and 0, vortex-lattice method with B = 60". 

plotted at the point in the downstroke when the wings pass through the horizontal 
position. These results were computed using a vortex-lattice mesh with 24 elements 
per period in the flight direction, and 24 elements in the spanwise direction. Each 
solution required about 69 s of CPU time to compute on a Silicon Graphics Indigo 
4400 workstation. Also shown is the circulation computed using the small-amplitude 
harmonic theory of $3. The two theories agree quite well for this small-amplitude 
case, even for flapping reduced frequencies as large as 10. 

We next consider the same flapping motion described by (4.10), but with a larger 
amplitude, 8 = 60". Figure 10 shows the optimum circulation distribution required 
to generate thrust. Note that the computed optimal circulation is in good agreement 
with the small-amplitude theory for the case where the frequency is small (the quasi- 
steady case). This seems to indicate that the restriction on amplitude (841) in the 
small-amplitude theory will only become important when the flapping amplitude is so 
large that the two wing tips come close to one another. The more severe restriction on 
the small-amplitude theory is that k6 Q 1. The large-amplitude vortex-lattice analysis 
and the small-amplitude harmonic theory disagree significantly even when k is as 
small as 2.0 for 8 = 60". When k is 5.0, there is very poor agreement between the 
small-amplitude theory and the vortex-lattice theory. (Presumably the latter theory is 
correct.) 

Shown in figure 11 is the thrust power coefficient k22 computed using the vortex- 
lattice theory as a function of flapping frequency. Also shown for comparison is 
the induced power computed using the small-amplitude theory. For small-amplitude 
flapping (6 = lSo) ,  the two theories agree reasonably well, even for flapping frequencies 
k as large as 10. For a flapping amplitude of 8 = 60", however, the minimum 
induced power predicted using the vortex-lattice model is considerably larger than that 
predicted using the small-amplitude theory, except at very low flapping frequencies. 
It is interesting that for the 8 = 60" case, the induced power decreases rapidly with 
increasing flapping frequency up to a reduced frequency k of about 4 or 5. Above this 
frequency, the reduction in induced power is more modest, and presumably viscous 
profile losses would increase rapidly. By way of comparison, in low-speed flight where 
thrust requirements are large, the budgerigar (Melopsittacus undulatus) flaps its wings 
with a reduced frequency k of about 3.90 (Tucker 1968, 1973; private communication 
V. A. Tucker, 1994). 
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FIGURE 11. Minimum induced power requirements for thrust due to flapping: 
small-amplitude harmonic theory; A, vortex-lattice method with 6' = 15", v, vor- 
tex-lattice method with 6' = 60". 
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FIGURE 12. (a) Top view of wake showing contours of optimal circulation distribution for thrust 
( p U T b / T l ) .  (b )  Optimal circulation distribution for lift ( p U T b / 5 f 1 ) .  0 = 45", k = 5.0. 

Figure 12 shows contour plots of the circulation distribution over one period of 
flapping motion for the case where the amplitude of flapping motion 8 is 45", and 
the reduced frequency k is n. The distribution of circulation for lift is nearly constant 
at each spanwise station (the wavy contours are primarily a result of the apparent 
shortening of the wing span in the (x,y)-plane due to large-amplitude flapping). In 
contrast, the distribution of circulation for thrust produces primarily shed vorticity, 
especially at the top and bottom of the stroke. Also, we note that for this large- 
amplitude high-frequency case the circulation distribution is periodic in time, but not 
sinusoidal. In fact, in the limit of very large frequency, all of the shed vorticity occurs 
at the top and bottom of the stroke, and all of the trailing vorticity occurs at the tips. 
The result is an 'actuator disk' model in which all of the vorticity occurs along the 
trace of the outline of the disk, in this case the area in the (y,z)-plane swept out by 
the wings. 

For the case where both lift and thrust must be generated, the optimum circulation 
distribution will be a linear combination of those shown in figure 12. Figure 13 
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FIGURE 13. Top view of wake showing contours of optimal circulation distribution for flapping 
motion that must simultaneously produce lift and thrust. k = 5.0, 0 = 45”. (a) F , / 2 ’ 1  = 0.1, ( b )  
F,/2’1 = 0.4. For both cases, contours of pUTbl2’1 are shown. 

shows the optimal circulation distribution in the wake for two cases: 91/91 = 0.1 
and Fl/LZl = 0.4. The first is representative of fast forward flight (cruise) where 
the thrust requirements are modest. The second case corresponds to slow flight or 
climbing flight where the thrust requirements are more severe. Note in the case 
of Fl/LZl = 0.1, few of the vortex filaments form closed loops. Thus, we may 
expect that this wake will roll up into two undulating finite-core vortices. Because 
on the upstroke the vortex filaments are on average more inboard than on the 
downstroke (see figure 13), the rolled-up vortices will tend to be more inboard on the 
upstroke. This situation is qualitatively similar to the ‘concertina wake’ described by 
Pennycuick (1988) and the ‘continuous-wake gait’ described by Rayner (1991, 1993), 
and observed by Spedding (1986) and others for birds in fast forward flight. 

In contrast, for the case where 91/91 = 0.4, the filaments of vorticity for the 
optimal circulation distribution form a sheet of concentric vortex rings on the down- 
stroke, with a sheet of predominately trailing vorticity during the upstroke. When 
rolled up, we would expect the wake to consist of finite-core vortex rings connected 
by a pair of finite-core trailing vortices. This situation is qualitatively similar to the 
ladder wake described by Pennycuick (1988). Also note that during the upstroke the 
circulation is quite small near the tips. Thus, since the wing is relatively inactive near 
the tips, it may be advantageous to reduce the span of the wing on the upstroke to 
reduce viscous drag. 

Figure 14 shows the minimum induced power coefficient for thrust, k22,  as a 
function of flapping amplitude for several different flapping frequencies. Also shown 
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FIGURE 14. Minimum induced power required to generate thrust using large-amplitude flapping 
for several different flapping frequencies: ~ , vortex-lattice method; - - -, actuator disk 
theory. 

for comparison is the induced power predicted using lightly loaded actuator disk 
theory where the actuator disk area A is taken to be the area in the (y,z)-plane 
swept out by the flapping motion, A = Ob2. Actuator disk theory should provide 
the theoretical lower limit to the minimum induced power requirements for high 
flapping frequencies.? Note that the induced power required for thrust decreases 
with increasing flapping amplitude and flapping frequency. Also, as expected, the 
induced power due to flapping is generally higher than predicted using actuator disk 
theory. However, as the flapping frequency and amplitude get large, the induced 
power approaches the actuator disk limit (the present theory slightly under-predicts 
the induced power due to numerical truncation error). 

Another interesting feature of large-amplitude flapping is the trade-off between the 
induced power associated with thrust and lift. To generate a certain lift and thrust at a 
given flapping frequency, there exists an optimum flapping amplitude. To understand 
this phenomenon, consider the induced power required to generate lift, k l l .  Shown 
in figure 15 is the induced power required to generate lift as a function of flapping 
amplitude for several different flapping frequencies. Note that for small-amplitude 
flapping, the induced power coefficient approaches 1/n (to within truncation error) 
corresponding to the optimal elliptical distribution of circulation for a planar wing. 
For larger amplitudes, the effective span of the wing is reduced on average, and hence 
the average circulation must increase resulting in larger induced power losses. The 
trend of increasing induced power with flapping amplitude is opposite to the trend 
in the case of thrust. Thus, there will exist an optimum flapping amplitude that 
minimizes the induced power required to simultaneously generate lift and thrust. 

One subtlety with the present analysis is that it predicts the induced power, but not 
the form of the induced power (see 92.3, (2.9)-(2.11)). For example, in gliding flight, 
the induced power manifests itself as induced drag opposing the forward motion of the 
wing. In flapping flight, however, the induced power may appear as induced drag, or 

Theodorsen (1948, p. 31) has asserted that for propellers, actuator disk theory is not the limit 
of minimum induced loss theory as the rotational frequency of the propeller goes to infinity. In 
fact, the limiting induced power of a M.I.L. propeller is slightly larger than predicted by actuator 
disk theory, but typically no more than about 1% more (Ribner & Foster 1990). We may expect a 
similar result for flapping. 
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FIGURE 15. Minimum induced power required to generate lift using large-amplitude flapping for 
several different flapping frequencies : , vortex-lattice method; - - -, planar wing limit, 
kl l  = l /n .  

as induced shaft power, or as a combination of the two. If the induced power appears 
entirely as induced shaft power, then additional shaft power must be expended to flap 
the wings. If, on the other hand, the induced power appears as induced drag, then 
additional power must be expended to produce the additional thrust to overcome 
the induced drag. But since the production of thrust is inefficient, some additional 
induced drag will result. The latter case is clearly less desirable. However, for small- 
amplitude motions, the induced power appears entirely as induced drag. Thus, for 
the present analysis, we assume that the same is true for large-amplitude motions. 
While an approximation, this assumption is thought to provide an upper bound on 
the minimum induced power required for sustained flight, and a reasonable estimate 
of the induced power for moderate flapping amplitudes. Furthermore, one can easily 
show that for light loading, the form of the induced power has only a higher-order 
influence on the propulsive efficiency. 

Consider the case where a flapping wing must generate lift, provide sufficient thrust 
to overcome profile and parasitic drag, provide thrust to climb, and provide thrust to 
overcome any induced drag. The resulting force balance in the flight direction can be 
expressed as 

Flu = p11a2  + P1231F-1 + P22F12 + %tU, (4.11) 
where we have lumped the profile drag, parasitic drag, and the component of force 
due to gravity opposite to the direction of flight into a single 'external' drag term 
aext. Solving for the thrust required to maintain unaccelerated flight and non- 
dimensionalizing the result, we find that the coefficient of thrust is given by 

Under the assumption that all the induced power appears as induced drag, the 
coefficient of thrust will also be equal to the coefficient of total shaft power. As an 
example, consider the case where the coefficient of lift Cu, is equal to 0.1. Shown 
in figure 16 is the coefficient of thrust for several coefficients of external drag as a 
function of flapping amplitude for a flapping frequency k equal to 7c. Note that in 
each case there is an optimum flapping amplitude which gives a minimum coefficient 
of thrust (and hence flapping power). As the external drag increases, the optimum 
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FIGURE 16. Total power required to maintain unaccelerated flight. Cp, = 0.1, k = 71. 

flapping amplitude increases. This is to be expected since generally more thrust will 
be required, and the power required for thrust decreases with increasing flapping 
amplitude. 

Finally, we quantify the induced propulsive efficiency for flapping. The propulsive 
efficiency y is defined here as the total drag in gliding flight times the flight velocity 
divided by the power provided required to flap the wings. Hence, 

(4.13) 

where kY1 is the lift power coefficient for non-flapping flight, and is equal to l /n.  
Using this definition, one finds that for a coefficient of lift Cul equal to 0.1, and a 
coefficient of external drag C9 equal to 0.01, the maximum propulsive efficiency is 
88.2% corresponding to an optimum flapping amplitude of 37". For C9 equal to 0.03, 
the maximum propulsive efficiency is 85.5% corresponding to an optimum flapping 
amplitude of about 58". Thus, flapping is seen to be a remarkably efficient form of 
propulsion. 

5. Summary and discussion 
The Betz criterion has been applied to the problem of flapping as a means of 

simultaneously generating thrust and lift in forward flight. The physical interpretation 
of the Betz criterion is that the optimal induced normal wash on the wake is equivalent 
to the normal wash on an impermeable surface which has the shape of the vortex 
trace, and which is translated with velocity A through an inviscid, irrotational fluid 
at rest at infinity. The optimal circulation on the wake, which in turn gives the time 
history of the optimal circulation along the span of the flapping wings, is equal to 
the potential jump across the impermeable surface. 

For small-amplitude harmonic motion, a one-dimensional integral equation for the 
unknown circulation distribution was derived. The integral equation can be solved 
quite efficiently using numerical quadrature. For low-frequency flapping, the present 
theory correctly reproduces the results of the quasi-steady theory of Jones (1980). 
Notwithstanding the assumption of small-amplitude flapping motion, the method 
predicts that the highest propulsive efficiencies will be produced when the amplitude 
and frequency of the flapping motion is large. 
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For more general large-amplitude flapping motions, a vortex-lattice method was 
developed for computing the optimal circulation distribution. This method was com- 
pared to three other theories. For low-frequency small-amplitude motions, the present 
vortex-lattice theory recovers the circulation distribution predicted by Jones (1980). 
To test the results for large-amplitude, high-frequency flapping motions, we compared 
the results of the present theory to Goldstein’s (1929) propeller theory and found 
them to be in excellent agreement. Finally, in the limit of very high flapping frequency, 
the predicted induced power for flapping to produce thrust approaches the theoretical 
limit of actuator disk theory. 

Using the vortex-lattice theory, we computed the optimal circulation distribution 
required to simultaneously generate thrust and lift for a prescribed wing beat. For low 
values of thrust to lift, the optimal solutions consists primarily of trailing vorticity. 
For this case, the physical wake will roll up into two undulating vortices similar to 
the concertina wake described by Pennycuick (1988) or the continuous-vortex wake 
described by Rayner (1991, 1993). For the large thrust-to-lift case, the vortex filaments 
for the optimal distribution form a sheet of concentric vortex rings on the downstroke. 
These vortex rings are ‘connected’ by a sheet of predominately trailing filaments on 
the upstroke. In other words, the wing is aerodynamically active on both the upstroke 
and downstroke, much like the ladder-wake gait described by Pennycuick (1988). 
This result is in contrast to the experimental observation of wakes behind slow flying 
birds and bats, e.g. Spedding et al. (1984) and Spedding (1986). In the experiments 
described in these studies, the wake appears to be composed of a chain of distinct 
finite-core vortices. In fact, Rayner (1991) goes so far as to claim that the ladder-wake 
gait is never used by vertebrates. 

There are a number of possible explanations for the differences between the 
present theory and the experimental observations. First, the present theory predicts 
the optimal aerodynamic solution. Animals may generate lift and thrust suboptimally 
(from an aerodynamic point of view), or the optimal solution adapted by animals 
may take into account important effects not included in the present study. For 
example, the physiological efficiency of the muscles in the conversion of energy into 
shaft power is not modelled here, nor are viscous effects. Second, we note that in 
some of the experimental data, the wing may in fact be aerodynamically active on the 
upstroke, but the relatively weak trailing vorticity may not be visible in the rolled-up 
wake. In fact, there is some experimental evidence supporting this conjecture. In 
two experimental studies, Spedding et ul. (1984) and Spedding (1986) found that 
the momentum contained in the wake consisting of finite-core vortex rings of the 
size and strength measured in the experiments provided only 35% to 50% of the 
lift required to support the weight of slow-flying birds. Quoting Spedding (1986), 
“From the numerical results, it seems that a simple vortex ring model fails as an 
accurate experimental description of the wake ... If a chain of vortex rings is the 
most appropriate qualitative description of the wake, it is still a simplified one which, 
from an experimental point of view, results in a significant amount of the wake 
momentum being ignored.” Some of this missing momentum may be contained in 
trailing vorticity in the upstroke portion of the wake, as suggested by the results 
presented in figure 13. Third and finally, the present description of the kinematics of 
the wing motion may be too simplistic. For instance, most birds flex their wings at 
the wrist on the upstroke. In the present study, however, the wing was assumed rigid. 
The flexing of bird wings may produce useful aerodynamic benefits not reflected in 
the examples presented in this paper. Nevertheless, the methods described here may 
be used to analyse the aerodynamics of flexible flapping motions. 



Minimum induced power requirements for flapping flight 311 

The present analysis is a first-order theory, i.e. it does not address wake roll-up. 
We would argue, however, that wake roll-up does not significantly affect the optimal 
circulation distribution. This is not to say that the wake does not roll up - it does. 
Instead we would assert that for light loading the roll-up has little influence on the 
flow near the wing. For instance, propellers may be regarded as generating thrust by 
large-amplitude ‘rotational flapping.’ The wake left behind the propeller is helical in 
shape, and successive turns of the wake may be quite close to one another. The wake 
rapidly rolls up forming a chaotic circular jet behind the propeller. Nevertheless, the 
classical first-order propeller theory of Goldstein (1929) works quite well, and is still 
used to design propellers of high efficiency. 

We emphasize that the models presented in this paper address only the induced 
losses associated with wing flapping. A more complete theory would also account 
for profile and parasitic losses. As in propellers, profile losses will be large for large 
reduced frequencies since the relative velocity will be large and the viscous power 
goes roughly like the cube of the relative velocity. At very low reduced frequencies, on 
the other hand, the sectional lift required to generate a given thrust gets large since 
the unit normal to the wake is nearly perpendicular to the direction of flight. Large 
coefficients of sectional lift generally imply large coefficients of sectional viscous drag. 
Therefore, one would expect that in addition to an optimum flapping amplitude, there 
would also exist an intermediate optimum flapping frequency. In fact, the viscous 
forces may alter the optimum circulation distribution rendering the inviscid load 
distributions suboptimal. One simple but approximate approach for high-aspect-ratio 
wings is to assume that the reduced frequency based on wing span is 0(1), but the 
reduced frequency based on aerodynamic chord is small. Thus, inviscid power losses 
can be modelled as described in this paper, with viscous profile losses modelled at 
each spanwise station using quasi-steady drag polar correlations of airfoil sections. 
The first author is currently exploring this approach with applications to carangiform 
swimming, and will report the results in a forthcoming paper (Hall 1996). 

The authors would like to thank Professor Vance A. Tucker of the Department 
of Zoology at Duke University for his useful comments on various aspects of bird 
flight, and for providing the digitized data of the planform of the Harris’ hawk used 
in figure 2. 

Appendix. Alternative derivation of thrust and power 
In 6 2, the lift, side force, thrust, and power associated with flapping were computed 

using impulse and energy considerations. An explicit assumption in that derivation 
was that the wings were lightly loaded. In this Appendix, these quantities are rederived 
using integral conservation statements for both the general loading (0 A.l and 5 A.2) 
and light loading cases (gA.3). We consider the situation where the flapping motion 
may be large and periodic in time. 

A.l. Thrust, side force, and lift 
Consider first the calculation of the time-averaged aerodynamic forces (the thrust, 
side force, and lift). For convenience, the calculations are performed in an inertial 
reference frame translating with the wing. In this frame of reference, the far-field 
flow is in the positive x-direction with speed U .  Now suppose the wing is enclosed 
in a control volume (CV) fixed in space bounded by a control surface (CS) as shown 
schematically in figure 17. The aft portion of the control surface is the ‘Trefftz plane’, 
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FIGURE 17. Two-dimensional sketch of conventional control volume and ‘Trefftz volume’ used to 
compute time-averaged aerodynamic forces and power. 

and is taken to be normal to the direction of flight. Application of the integral form 
of the conservation of momentum gives 

where here F ( t )  represents the instantaneous force acting on the wing (-F(t) is the 
force exerted by the wing on the fluid), n is the outward unit normal to the control 
surface, and V is the fluid velocity given by 

V = U i + V 4 = ( U + u ) i + v j + w k .  (A 2) 

In this frame of reference, the flow is unsteady. The static pressure p is given by the 
unsteady form of Bernoulli’s equation, i.e. 

Substitution of ( A 2 )  and (A3) into (A 1) gives, after some manipulation, 

F(t)  = -$ l l v p V  d-t‘ +ds i p  (2Uu +u2 + v 2  + w2 

- As p U i  V * d d  - ds p(ui + v j + w k )  V - n  d d .  

Application of conservation of mass reveals that the third integral in (A 4) is identically 
zero. Also, except on the Trefftz plane, the perturbation velocities and velocity 
potentials decay faster than r-’, where r is the distance from the wake, so that the 
surface integrals go to zero if the control volume is placed far from the wing, except 
on the Trefftz plane which intersects the wake. Therefore, after some rearranging, the 
instantaneous force on the wing may be expressed as 

where ST denotes the Trefftz plane. 
The presence of the time-dependent volume integral makes it impossible to calculate 

the instantaneous force acting on the wing without knowing the details of the flow 
everywhere in the control volume. However, we are interested here in the time- 
averaged forces. Therefore, (A5) is multiplied by dt, integrated over one time period, 
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and the result divided by the period T to obtain the average forces, i.e. 

Note that the first term in (A5) does not appear in (A6). This is because when 
multiplied by dt, that term is an exact differential. Since the flow is temporally 
periodic, the result of the integration over one period is zero. 

Taking the scalar product of (A6) with -i, j ,  and k gives the time-averaged thrust, 
side force, and lift, respectively. These are 

In the integral in (A 7), one might be tempted to interpret the term ( @ / a t )  dt as an 
exact differential, and thus conclude that that portion of the integral is zero since the 
unsteady flow is period in time. However, the potential is only periodic so long as one 
does not pass through the wake. On the Trefftz plane, the wake oscillates periodically 
so that in some regions of the Trefftz plane, the wake is crossed as time advances. 
Thus the unsteady potential is not temporally periodic. The physical interpretation is 
that (first-order) thrust can only be generated if the wake undergoes unsteady motion 
normal to the direction of flight. 

Finally, we emphasize that (A7)-(A9) are exact even for heavily loaded wings 
provided that the flow is incompressible, inviscid, and irrotational except for trailing 
and shed vorticity in the wake. 

A.2. Flapping power 
Next, we compute the mechanical power required to flap the wings. The integral form 
of the conservation of energy is 

where p s h a f t ( t )  is the instantaneous mechanical power required to flap the wings 
(-g)shaft(t) is the rate at which the wings do work on the fluid). Again, making use 
of Bernoulli's equation and noting that the perturbation quantities fall to zero faster 
than rP2 gives 

Finally, averaging the power over one period gives 
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where the first term in (A 11) integrates to zero because when multiplied by dt it is 
an exact differential. 

Finally, the average induced power g i n d  is defined as the difference between the 
average power and the thrust power, and is given by 

Again, (A 13) is exact provided the flow is inviscid, incompressible, and irrotational. 

A.3. Light loading approximations 
For most cases of practical interest (except hover and slow forward flight), the 
assumption of light loading is valid, that is, IV4l Q U .  Under these circumstances, the 
unsteady wake and associated potential are simply convected in the x-direction with 
speed U.  Thus, 4 = 4 ( x  - Ut, y, z) to leading order so that 

= -uu. a4 
at 
- 

Also, since in the light-loading approximation the unsteady flow is simply convected 
in the x-direction, averaging over one temporal period is equivalent to averaging over 
one spatial period. Therefore, to first order, (A 6) becomes 

F = - f /L p(ui + v j + wk)dY, 

where Y is the ‘Trefftz volume’, the volume contained between two Trefftz planes a 
distance U T apart. 

Similarly, using the light-loading assumption, the average induced power (A 13) is 
to leading order given by 

In words, the induced power for lightly loaded systems is just the rate at which 
kinetic energy as measured in the fluid frame of reference is deposited into the wake. 
Equation (A 16) is valid for both planar and non-planar wakes. 
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